
February 2006 www.stsc.hill.af.mil 13

This article discusses a graphic that
shows the status of larger projects,

how to gather the information needed,
read the status chart, and when needed,
show more detailed breakdown for each
subproject.

Motivation
Imagine a steering committee opening a
large binder for a fairly large project,
hoping to see its status. They are met by
Gantt charts, cost expenditure tables, and
if they are lucky, earned-value graphs.
None of these quickly and accurately
show the committee what is going on
with the project, which components are
in trouble, and where they stand with
respect to delivery. Worse, many projects
these days use incremental, concurrent,
or agile approaches, which do not fit into
the standard governance milestones of
requirements complete, design complete, code com-
plete, and integration complete.

This is not the article to review all the
problems with that standard project gov-
ernance model. The problems may, how-
ever, be briefly summarized as follows:
• The standard governance model is a

single-pass waterfall model that has
been roundly criticized over the years.

• It does not support incremental or
concurrent approaches, both of
which are being recommended more
frequently these days.

• The Gantt chart does not show per-
centage complete very well, nor expected
versus actual progress.

• The standard earned-value graph
shows tasks complete well, but tasks
complete does not reflect true progress
on the project; true value in software
development accrues suddenly (or
fails suddenly) only at the moment at
which the new features are integrated
into the code base.
What is needed is a way that more

accurately shows true value, more readily
shows expected versus actual progress,
and allows teams using different combi-
nations of waterfall, incremental, concur-
rent, and agile approaches to show their
varied strategies.

This article describes a proposed
graphic that meets those constraints.
Humans and Technology is starting to
use it on a program that is fairly large for
the private sector: about a dozen applica-
tions and two dozen supporting compo-
nents and databases to be installed in var-
ious configurations in two dozen receiv-
ing sites. The graphic appears to work in
our situation and has let us update a
waterfall governance model to permit
agile, concurrent, and incremental devel-
opment.

The figures in this article are simplifi-
cations of the more complicated versions
created for that program, so we have a
sense that they scale reasonably. We see
ways to update the graphic automatically,
or even to update manually monthly for
the steering committee meeting. While
not fully tested, it shows promise.

Here are the details – please write me

if you try it out and come up with
improvements. (Note: The figures in this
article are printed in black and white; the
online version [1] uses color.)

The Graphic
The graphic contains the following ele-
ments:
• The components being built, how

each fits into the system architecture,
and the person responsible for each.

• Codependency relations between hor-
izontal and vertical components.

• The incremental growth strategy for
each component over the project life.

• The expected versus actual amount of
work completed to date.

• A color or shading to mark the alarm
level for each component.

The following is a discussion of those
topics in three categories: the system
structure, the intended strategies, and

A Governance Model for Incremental,
Concurrent, or Agile Projects

Use the model in this article to regain oversight of a complex multi-project that uses concurrent and incremental development
strategies in differing amounts on different subprojects. The model makes this possible by estimating and then tracking intend-
ed versus actual functionality integrated either monthly or quarterly.

Dr. Alistair Cockburn
Humans and Technology

Figure 1: Governance Graphic

Common UI [Smith]

Project Zewa Status

Legend

Significantly behind

On track

Not significantly behind

Actual vs. Expected done

Intended done after
each internal release

Component
Common

component

App

Application

UI Shell [Jones]

Workstation

Security [Sanchez]

DB svcs [Rich]

App-Independent BackEnd

Security [Sanchez]

App 1
[Harmon]

App 2
[Reese]

App 3
[Marks]

App-Specific Back End

DB 1 [Rich]

DB 2 [Carmac]

Component
component

>$1M budget

Component
component

< $1M budget

Figure 1:Governance Graphic100% functionality

Status at: 2006.05.15 in: 2005.01-2005.12

UI User Interface

DB Database

A New Twist on Today’s Technology

14 CROSSTALK The Journal of Defense Software Engineering February 2006

expected versus ideal progress.

System Structure
In Figure 1, the three vertical rectangles
indicate applications – the items bought
separately for end-user functionality. The
seven horizontal rectangles indicate ser-
vice components needed across applica-
tions – on the user’s desktop or the back
end. Two of the horizontal components
cross in front of the applications to indicate
that the horizontal component contains a
specific, different functionality or data
for each application. Domain databases
that get extended for each new applica-
tion are likely to be among these applica-
tion-specific, back-end components
(more on this later).

The system shown in Figure 1 is fairly
simple. The first project for which I drew
this graphic had 17 horizontal and 15 ver-
tical components, and additional coloring
to show legacy components that were to
be removed over time. We were still able
to draw it legibly on legal-sized paper.

Intended Strategies
Although incremental development has
been around much longer than the agile
movement, the question of how to show
different incremental strategies for gover-
nance purposes – preferably in a small

space – is still open.
Agile project teams measure progress

not according to how many requirements
have been gathered, but by how much
running functionality has been designed,
programmed, and integrated (Ron
Jeffries neatly calls these running tested
features, or RTF [2]). A common way to
show the growth of RTF is through
burn-up charts, as in Figure 2, which
shows the expected versus actual integra-
tion of a set of workflow components by
month.

Agile burn-up charts are very similar
to traditional earned-value charts with
one crucial exception: The team only gets
credit when the features are integrated
into the full code base and the result
passes testing [3]. This single chart shift
makes a big difference in the reliability of
the progress data presented.

Burn charts show more than we need
and take too much space for governance
oversight purposes. To reduce their size
and information, we use the idea of an
internal release (IR).

A team that cannot deploy its system
to live users every few months can pretend
to deploy the system. It can test, inte-
grate, and deploy the system to the com-
puter of one or two friendly but real users.
The team thus exercises the end of their
development process and gets true user
feedback. Putting the system in front of
real users (as opposed to a test machine
in the basement) motivates the develop-
ment team to take their work seriously.

Such an IR should happen every one,
two, or three months. There are many
reasons not to deploy fully every three
months, but there is almost no reason not
to carry out an IR. These IRs fit neatly
into a monthly or quarterly reporting
mechanism.

With RTFs and IRs, we are ready to
capture various development strategy or
strategies that might show up on an
incremental development project.

In Figure 3, the vertical tick-marks
show 10 percent units of completed RTF
from left to right (100 percent complete
at the right). The triangle milestone
markers show the amount of RTF the
team targets to have completed and inte-
grated at each IR milestone. Figure 3
shows three teams’ strategies as follows:
• The top team plans to get less than 10

percent of its functionality in place in
the first IR, and to add functionality
in roughly equal thirds after that.

• The middle team intends to get 25
percent done in the first quarter, 60
percent by the end of the second
quarter, and almost 85 percent

through the third quarter (possibly so
they have time to fix mistakes in the
fourth quarter).

• The bottom team expects to get
almost 20 percent completed and
integrated in each of the first two
quarters, and then to speed up and get
30 percent done in each of the last
two quarters.
Alert readers will notice that these

tickmark drawings capture the vertical
axis of the burn-up charts at the IR
times.

These small diagrams let different
teams work in different ways and report
on their intentions. This is our goal.

Expected Versus Ideal Progress
Intention-Completion Bars
Figure 4 adds to Figure 3 the work actu-
ally completed compared to the work tar-
geted for any point in time.

In Figure 4, the taller vertical bar
moves from left to right within each IR
period to show the current targeted
accomplishment. It can run at a constant
rate within each period according to the
calendar, or it can be synchronized with
the team’s iteration plans (two- to six-
week planning and tracking time win-
dows). The shaded rectangles show the
functionality (RTF) completed and inte-
grated to date.

In Figure 4, we see that the top team
is delivering according to schedule, the
middle team is a little behind, and the
bottom team still has not finished the
work scheduled for the second IR.

Two comments must be made at this
point about RTF. The first is that not all
final deliverables consist of features that
run. Content databases and end-user doc-
umentation are examples. Teams can cre-
ate intention-completion bars for what-
ever their final deliverables are, since
those bars show growth of accomplish-
ment over time.

The second comment is that mea-
sures not tied to RTF are naturally haz-
ardous since it is so easy to start tracking
completion of artifacts that do not
directly get bought by customers. Linking
accomplishments to RTF makes the
reporting of actual value both easier and
more accurate.

Application-Specific Components
Horizontal components such as applica-
tion databases require new work and new
content for each new application.
Progress on these application-specific
horizontal components is typically diffi-
cult to report on since where they are varies
from application to application.

Figure 1:Governance Graphic

Jan Feb Mar Apr May Jun Jul Aug

Failure diagnosis

File attachment

Part attachment

Import calibration

Mod recap

Tool disassembly

100% functionality

Planned

Actual

Figure 2: Burn-Up Chart

DB Database

Figure 2: Burn-Up Chart

Figure 3: Target Progress Markers

Figure 3: Target Progress Markers
Figure 4: Intention-Completion Bars

D

Project/
Component

Sub-
Component

Owner Percent Done in
IR1

Total
Size

Units Confidence
in Estimate

(L, M, H)
IR 1 IR 2 IR 3 IR 4

Figure 4: Intention-Completion Bars

Figure 4: Intention-Completion Bars

D

A Governance Model for Incremental, Concurrent, or Agile Projects

February 2006 www.stsc.hill.af.mil 15

To show the status of such a compo-
nent, we use intention-completion bars
for the independent portion of the com-
ponent and for each application it must
serve. This lets the teams move at differ-
ent speeds as suits their particular situa-
tions, and allows the steering committee
to see each team’s status.

Summarizing the Graphic
Let us review the elements of the graph-
ic briefly:
• The rectangles represent components,

subsystems, or applications. Vertical
rectangles show applications; hori-
zontal ones show components that
get used across multiple applications
(this could be reversed for better lay-
out if, for example, there are many
applications and only a few cross
application components).

• Each rectangle shows the place of the
component in the overall architecture:
The top set of horizontal compo-
nents reside on the desktop, the mid-
dle and bottom sets of horizontal
components reside as back-end ser-
vices. The horizontal rectangles run-
ning behind the applications get creat-
ed independently of the applications;
the horizontal rectangles running in
front of the applications require appli-
cation-specific work or content.

• Intention-completion markers are
created for each component. They
show the percentage of RTF intended
for completion at each IR milestone,
the expected and the actual current
accomplishment, and the alarm level.
Intention-completion bars are created
for each component and for each
intersection of application-dependent
components.

Collecting the Information
The information rendered in Figure 1
also fits into a spreadsheet, a more useful
place to keep it while gathering and
updating the information. We can use
automated tools to gather information
about each component every week or
two, and roll up each team’s accomplish-
ments into reports at various levels. The
highest level is the one that gets painted
onto the graphic either by hand or auto-
matically. (The graphic can be generated
automatically using graphic markup lan-
guages, but that programming effort may
take longer than simply coloring the bars
each month).

Gathering the Estimates
It is one thing to say, “We intend to be 20
percent done after the first internal

release,” but the steering committee
needs to know, “Twenty percent of
what?” Being behind on 20 percent of
two use cases is very different than being
behind on 20 percent of 80 use cases.

To capture the of what for tracking, we
need three pieces of information. The
first, “What is the unit of accomplish-
ment?” often consists of use cases, or
more likely, individual steps in use cases.
Sometimes something quite different is
appropriate. A desktop component might
have as units of accomplishment user
interface (UI) widgets (frames, pull-down
lists, buttons) and interface calls used by
the applications. A database might have
entities and attributes, a Web site might
have articles and images, a medical data-
base might have medical codes as a unit
of accomplishment.

The second piece of information is,

obviously, “About how many units do
you expect to create?”

The third piece of information is the
confidence level on the estimate. At the
beginning of the project, it is appropriate
to have low confidence ratings in the esti-
mates: “We expect somewhere between
15 and 50 UI widgets, call it 30, plus or
minus 50 percent;” however, that comes
with the caution, “You called me into this
room and made me give you numbers,
but it’s not like I have a really good basis
for those numbers!”

The initial rough-size estimate is still
useful for getting an early handle on the
size and shape of the thing to be built.
That is why the information is collected
even when the confidence rating is low.
Marking a low confidence rating is useful
to the project leaders because they can
then raise the priority of getting enough
information to improve the confidence
level.

Needless to say, the estimate should
be updated at the start of successive iter-
ations with raised expectations about its
accuracy and confidence levels.

Table 1 shows a spreadsheet that can
be used to capture the estimates. Note
that the confidence rating is accompanied
by a smiling, neutral, or frowning face to
visually tag this important information.

Gathering the Status
To tag the timeline, we need to give each
iteration or planning window a milestone
number such as an IR completed then
followed by iteration completed. Thus,
milestone 0.3 means the end of the third
iteration before the first IR, and mile-
stone 2.1 means the end of the first iter-
ation after the second IR.

After iterations, the teams send in

Desktop frame Mr. A 0 20 80 100 30 UI widgets Med :-|

Desktop APIs Mr. A 20 50 80 100 60 API calls Lo :-(

App 1 UI Mr. B 5 60 90 100 450 UC steps Lo :-(

App 1 app Mr. B 10 60 90 100 450 UC steps Hi :-)

App 1 bus svcs Mr. B 5 50 80 100 450 UC steps Lo :-(

DB 1 setup Ms. C ?? Lo :-(

DB 1 App 1 Ms. C 60 codes Lo :-(

DB 1 App 2 Ms. C 10 codes Lo :-(

DB 2 setup Ms. C ?? Lo :-(

DB 2 App 1 Ms. C 2,000 entity attributes Lo :-(

DB 2 App 2 Ms. C 1,500 entity attributes Lo :-(

Table 1: Estimating Spreadsheet

Desktop frame Mr. A 0 20 80 100 30 UI widgets 50% 15 15

Desktop APIs Mr. A 20 50 80 100 60 API calls 65% 39 36

App 1 UI Mr. B 5 60 90 100 450 UC steps 75% 337 310

App 1 app Mr. B 10 60 90 100 450 UC steps 75% 337 320

App 1 bus svcs Mr. B 5 50 80 100 450 UC steps 65% 292 280

Table 2: Summary Spreadsheet

Project/
Component

Sub-
Component

Owner Percent Done in
IR1

Total
Size

Units Confidence
in Estimate

(L, M, H)
IR 1 IR 2 IR 3 IR 4

Project/
Component

Sub-
Component

Owner Percent Done In Total
Size

Units Expected
at IR 2.3
(units)

Actual
at IR 2.3
(units)IR 1 IR 2 IR 3 IR 4

at IR 2.3
(percent)

Expected

API - Application Program Interface, App - Application, UC - User Class

Table 1: Estimating Spreadsheet

“A team that
cannot deploy its

system to live users
every few months can
pretend to deploy the

system. It can test,
integrate, and deploy

the system to the
computer of one or two
friendly but real users.”

A New Twist on Today’s Technology

16 CROSSTALK The Journal of Defense Software Engineering February 2006

their RTF numbers, which get rolled up
into a summary spreadsheet at any level
of granularity desired. The nice thing
here is that this roll-up can be produced
automatically with simple tools. Table 2
shows how the first few rows of such a
spreadsheet might look after iteration
2.3.

The Status Report Packet
The graphic in Figure 1 serves as a good
summary page of the package put in front
of the steering committee. That package
also needs detail pages for the separate
subprojects.

Table 3 shows a sample detail page.
This detail page has three sections after
the header:
• A status/targeted/deferred and risk

snapshot for each section of work
within the component.

• A commentary, including surprises
and lessons learned during the previ-
ous period.

• Cost roll-up information.
The most unusual part of this status page
is the way in which the intention-comple-
tion bars are constructed to describe the
strategy and accomplishments of non-
RTF work.

Intention-Completion Bars for
Non-RTF Work
When someone sees a component
marked with a high-alarm status bar on
the summary page, they will naturally

want to read more detail. They will need
to understand what is happening with
respect to requirements gathering, UI
design, design and programming, and
user documentation.

The good news is that we can use the
intention-completion bars to show
progress within each specialty, whether
the team is using a sequential (waterfall)
strategy or a concurrent strategy. Figures
5 and 6 illustrate the two.

Figure 5 shows a team planning to
work in sequential fashion. They plan to
finish all their requirements in the first
period. They do not plan on starting
either the UI design or the programming
in that period. They expect to get the UI
design fully complete in the second quar-
ter. They plan to get perhaps 10 percent
of the programming done in the second
quarter, and the rest done equally in the
third and fourth quarters.

Figure 6 shows a strong concurrent
strategy. This team plans to get not quite
a third of their requirements settled in
the first period, and to have nearly as
much UI design and programming done
as requirements gathered. The require-
ments people will lead the UI design peo-
ple by a small amount, and the UI design
people will lead the programmers by a
small amount, but otherwise these groups
will run parallel to each other. They
intend to continue in this fashion
throughout the entire project.

In this article, I do not wish to indi-
cate that either approach is superior to
the other. What is important here is that
both sequential and concurrent strategies
(and many combinations) can be shown
using the intention-completion bars.

Status,Targeted, Deferred,
and Risks
For any component, the steering commit-
tee members will want to see the follow-
ing at the top of the detail page:
• The intention-completion bars for the

whole component from the summary

sheet, and for the work efforts within
the component, including non-RTF
work as just described.

• What was targeted for accomplish-
ment during this reporting period?

• What work is being deferred from
this period into the next?

• The dominant problems each sub-
team is facing or the risks they expect.

The risks and problems column lets the
team signal for help, whether that means
more people, more equipment, more
time with customers, etc.

Surprises, Lessons Learned, Items
Needing Special Attention
The middle of the page allows the team
to reflect and report on what happened
during the reporting period.

The first section describes the sur-
prises discovered. On projects I have vis-
ited, these have included the program-
mers not getting as much done as expect-
ed, a piece of technology not working as
expected, or, conversely, a new practice
such as daily stand-up meetings being
effective.

The second section describes the
lessons to be taken out of the period’s
work. These might include multiplying
developer estimates by a factor before
committing to them, doing technology
spikes before committing to technology,
or choosing to keep the new, daily, stand-
up meetings. These must be truly lessons
learned within the period, not speculations
on what might work in the future.

The third section is for anything the
team wishes to report on. It may expand
on risks or highlight some particular
worry to which they will be paying close
attention.

Cost Roll-up
Finally, the steering group needs to see
how fast the money is being used. This
section may be presented in tabular or
burn-up form, and include staffing sizes
as well as budget information as desired.

Figure 5: A Sequential Development Strategy

Requirements

UI Design

Programming

Figure 8: A Sequential Development Strategy
Requirements

UI Design

Programming

Figure 9: A Concurrent Development Strategy

C

Detail Sheet for: UI Shell
Product Manager: Jones
S

Figure 6: A Concurrent Development Strategy

rategy
Requirements

UI Design

Programming

Figure 9: A Concurrent Development Strategy

C

Table 1: Estimating Spreadsheet

Desktop frame Mr. A 0 20 80 100 30 UI widgets 50% 15 15

Desktop APIs Mr. A 20 50 80 100 60 API calls 65% 39 36

App 1 UI Mr. B 5 60 90 100 450 UC steps 75% 337 310

App 1 app Mr. B 10 60 90 100 450 UC steps 75% 337 320

App 1 bus svcs Mr. B 5 50 80 100 450 UC steps 65% 292 280

Table 2: Summary Spreadsheet

P

Project/
Component

Sub-
Component

Owner Percent Done In Total
Size

Units Expected
at IR 2.3
(units)

Actual
at IR 2.3
(units)IR 1 IR 2 IR 3 IR 4

at IR 2.3
(percent)

Expected

A

Table 2: Summary Spreadsheet

A Governance Model for Incremental, Concurrent, or Agile Projects

February 2006 www.stsc.hill.af.mil 17

Summary
The first contribution of this article is the
description of the intention-completion
graphic, showing the following:
• The strategy that the team has in mind

for its work, whether sequential or
concurrent.

• How much the team had expected to
have done at this reporting point.

• How much the team actually has done
at this point.
The intention-completion graphic is

important because it allows different
teams to choose different strategies and
report on them, all in the same format.
The absence of a common reporting for-
mat has been a painful point for incre-
mental, concurrent, and agile projects for
a long time.

The second contribution is the project
summary graphic and its spreadsheet
counterpart. The spreadsheet allows the
leadership team to collect estimates and
plans at a very early point in the project,
and easily update these by using automat-
ed tools. The graphic provides a way to
show at a glance the entirety of a quite
complex project. This addresses the ques-
tions, “What are we building?” and “How
are we doing?”

The third contribution is the descrip-
tion of a sample, one-page detail sheet
(see Table 3) for each component or sub-
project. This page shows at a glance the
strategies and status within the subproject,
along with key information the steering
committee needs to understand and
respond to.

The resulting packet of information
allows people who meet only once a
month or quarter to assess the intentions
and status of projects that use various
mixtures of waterfall, incremental, con-
current, and agile strategies.

If you use this model and find ways of
improving it, please let me know at
<acockburn@aol.com.>u

References
1. Cockburn, A. “A Governance Model

for Incremental, Concurrent, or Agile
Projects.” CrossTalk Feb. 2006
<www.stsc.hill.af.mil/crosstalk/2006/
02/0602Cockburn.html>.

2. Jeffries, R. “A Metric Leading to
Agility.” XProgramming.com 14 June
2004 <www.xprogramming.com/xp
mag/jatRtsMetric.htm>.

3. Cockburn, A. “Earned Value and Burn
Charts.” Technical Report. Humans and
Technology, Apr. 2004 <http://alistair.
cockburn.us/crystal/articles/evabc/
earnedvalueandburncharts. htm>.

Figure 9: A Concurrent Development Strategy

Composite <What the accom-
plishment was to
be in this period
for this sub-project.>

<What got moved
out of this period
into the next period?>

<The dominant risk
for this sub-project.>

<The amount of
requirements
intended to be
completed in this
period.>

<What requirements
 got moved out of
 this period into the
next period?>

<The dominant
risk for the
requirements
gathering effort.>

<The amount of user
interface design
intended to be com-
pleted in this period.>

<What user interface
design got moved out
of this period into the
next period?>

<The dominant risk
for the UI designers.>

<The amount of RTF
intended to be
integrated in this
this period.>

<What programming
got moved out of this
period into the next
period?>

<The dominant risk
for the programmers.>

User Doc. <The amount of end-
user documentation
intended to be
completed in this
period.>

<What end-user
documentation got
moved out into the
next period?>

<The dominant risk for
user documentation.>

Requirements

UI Design

Program

Targeted
Accomplishment

Work Being
Deferred

Dominant
Problem/Risk

Detail Sheet for: UI Shell
Product Manager: Jones
Status at: 2006.05.15

Surprises this Period:
 <Surprises the manager or the team discovered (e.g., the productivity of the programmers
 wasn't as high as expected).>
Lessons Learned this Period:
 <The lessons to be taken out of the period's work (e.g., in the future, multiply developer
 estimates by a factor of 1.5 before committing to them).>
Items Needing Special Attention:
 <Anything the team wishes to report out. It may expand on risks, or highlight some
 particular worry.>
Cost/Budget

ate
Expected $ $
Actual $ $

This Period Total to Date

Table 3: Detail Sheet for UI Shell

Alistair Cockburn, Ph.D.,
is an internationally re-
spected expert on object-
oriented design, software
development methodolo-
gies, use cases, and project

management. The author of two Jolt
Productivity award-winning books, “Agile
Software Development” and “Writing
Effective Use Cases,” as well as the peren-
nial favorite, “Surviving OO Projects,” he
was one of the authors of the Agile
Development Manifesto. Cockburn
defined an early agile methodology for the
IBM Consulting Group in 1992, served as

special advisor to the Central Bank of
Norway in 1998, and has worked in com-
panies from Scandinavia to South Africa,
North America to China. Internationally,
he is known for his seminal work on
methodologies and use cases, as well as his
lively presentations and interactive work-
shops. Many of his materials are available
online at <http://alistair.cockburn.us>.

Humans and Technology
1814 Fort Douglas CIR
Salt Lake City, UT 84103
Phone: (801) 582-3162
E-mail: acockburn@aol.com

About the Author

